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Abstract

In the last years there has been a wide consensus on the im-
portance of brain imaging in assessing neurodegenerative and
psychiatric disorders. Different techniques for functional and
anatomical examination are currently clinically implemented in
neurology and psychiatry to improve sensitivity, specificity and
accuracy of the diagnosis of various diseases. In addition, the
increasing life expectancy in the Western world raises the so-
cial importance and the economical impact of age-related neu-
rodegenerative disorders since the incidence of Alzheimer di-
sease and Parkinson disease is higher in the elderly.
An early diagnosis of neuro-psychiatric diseases and the
assessment of “natural” changes of regional cerebral blood flow
(rCBF) distribution during normal aging are hence of utmost
importance.
In the recent past brain disorders have extensively been inves-
tigated by means of optimised nuclear medicine techniques,
instruments and algorithms. Diagnosis can be better achieved
by identifying those structures in which CBF or metabolism

deviate from normality resulting in significant changes as com-
pared to a reference database.
In the present paper we present some studies investigating, by
means of recently implemented diagnostic tools, patients bearer
of various neuro-psychiatric disorders. The improved nuclear
medicine techniques and instrumentation, the state-of-the-art
software for brain imaging standardisation and the use of so-
phisticated multivariate data analysis are extensively reviewed.
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Introduction

The importance of brain imaging in the assessment of cere-
brovascular, neurodegenerative and psychiatric disorders steadily
increases. Different techniques for functional and anatomical
investigations are clinically implemented in neurology and psychia-
try in order to improve sensitivity and accuracy. On the other hand,
the longer life expectancy in the Western world raises the social
importance and the economical impact of age-related disorders.

Alzheimer’s disease has a prevalence of approximately 1 per-
cent among those 65 to 69 years of age and increases with age to
40 to 50 percent among persons 95 years of age and over. Par-
kinson’s disease has a prevalence of approximately 0.5 to 1 per-
cent among persons 65 to 69 years of age, rising to 1 to 3 percent
among persons 80 years of age and older [1]. The extrapolation
of the AD prevalence curve suggests that all individuals would be
demented at the age of 113 years.

The neuro-psychiatric and behavioural abnormalities are of-
ten source of considerable patient and caregiver distress, while
a proper diagnosis also contributes to the decision of institutio-
nalizing these patients. In addition, an early diagnosis by means
of functional imaging techniques and a better patient manage-
ment could result in considerable savings for the community, i.e.
1138 USD per AD correct diagnosis in USA [2].

In this scenario and in the perspective of future treatment pro-
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grams it will be more and more important to improve the accuracy
at any stage of the methodologies meant to discover the disease,
hence anticipating treatment.

The development and improvement of nuclear medicine tech-
niques and the optimisation of instruments and algorithms for func-
tional brain imaging could be applied at various clinical settings
as well as in basic neuro-physiological studies. As for neuroimag-
ing a fair diagnosis can be achieved by identifying those struc-
tures, irrespectively for the size, in which the cerebral blood flow
(CBF) or metabolism modifications deviate from normality resul-
ting in significant changes as compared to a reference database.
Comparison of scans in neurological and psychiatric studies is of
utmost importance. The diagnostic value of an image is enhanced
if the patient’s scan can be compared to an average one obtained
from a control group.

This review concentrates on the capability of single photon
emission computed tomography (SPECT) and CBF to detect fine
functional and pathological changes. This can be accomplished
by the implementation of high resolution SPECT, by new software
able to automatically standardize the brain space and data across
scans and through the use of advanced statistical methods. The
examples of implementation in research are extracted from pa-
pers and recent communications at conference of our group and
will be shortly commented.

Methodological considerations

The assessment of CBF patterns in various brain disorders by
SPECT or positron emission tomography (PET) have in the past
mainly been carried out either by visual evaluation [3–6] or by
outlining the regions of interest (ROIs) in a manual or semiauto-
matic mode [7–10]. Results were obtained by computing ratios
between target and reference regions.

Such methods are time-consuming and poorly reproducible,
might suffer from excessive operator’s influence in the choice of
the ROIs and, due to the variable shape of human brains, lack of

spatial normalization, resulting in anatomical in-homogeneous
brain samples among subjects.

In the recent past the most advanced research groups across
the world dealing with neuroimaging have been implementing
a semi-automatic approach for brain regions identification that
could be in a second step used clinically to assess CBF changes
in a single individual as compared to a population of patients and
normal controls.

The process of transforming the images into a common three-
-dimensional (3D) coordinate space, where each space element
(voxel) corresponds to the same anatomical entity in all images
under consideration, is denoted as spatial standardization. By
carefully standardizing each scan to an age-related rCBF data-
-base of control subjects it is possible, by means of subtractions
images and/or statistical comparisons, to precisely identify regions
with abnormal flow. This opens up the conditions for a new
approach in research and will allow an easier and earlier diagnosis.
The 3D analysis, as compared to conventional 2D data representa-
tion on transversal slices, is less dependent on errors in outlining
position. Furthermore, the 3D VOIs analysis reduces the variance
due to counting statistics since the number of voxels in a functional
region (VOI) is larger than a number of pixels in a 2D ROI.

The advantage of this technique is the possibility to fully exploit
the knowledge of the rCBF pattern as assessed in a group of nor-
mal subjects by using it as a reference for patients groups studies.

In clinical routine, it is possible to compare each single patient
to a group of several age matched normal subjects. Control sub-
jects are grouped according to their age, the uptake in the stan-
dardized volume is averaged and a reference image containing
the rCBF information for all subjects is created. To highlight the
possible pathology in the most of the cases the patient image is
subtracted from the reference one (Figure 1).

In some cases, especially in psychiatric disorders, the pathologi-
cal status results in an increased rCBF. In this case subtracting the
reference image from the pathological one will highlight the changes.

In 3D analysis, the inclusion of the white matter makes the

Figure 1Figure 1Figure 1Figure 1Figure 1. . . . . Inter-subject comparison. 76-year-old man, with symptoms of dementia since 10 yr admitted to the hospital for syncope attacks. The SPECT scan
is consistent with a diagnosis of Frontal Lobe Dementia. The decreased tracer uptake in frontal lobes is highlighted by the subtraction image (SUB),
obtained by subtracting the patient’s image (PAT) from the reference image (REF). This latter is the average of 12 age matched controls. The two sets
of data have been standardised into a common CBA space. The colour scale is in arbitrary units.
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sample more representative for global neurodegenerative chan-
ges and VOIs can be positioned on both anatomical and functional
regions improving the physiological significance of the analysis.
White matter is an important part of the neuronal system and it is
affected by neurodegenerative, cerebrovascular and psychiatric
disorders to the same extent as grey matter. Grey matter perfu-
sion is 2.0–3.5 times higher than white matter perfusion [11–12].
When 3D analysis is performed on extensive data volume the result-
ing rCBF is then calculated by averaging, in a certain VOI, a variable
number of counts detected in both grey and white matter kernels.
Performing SPECT rCBF studies using modern software working in
3D, we have to keep in mind that results obtained and comparison
with older data collected with more conventional 2D analyses should
be weighed considering the differences in methodology, the used
radiopharmaceutical and camera system characteristics.

Standardization software

In the recent years, several 3D digitized spatial standard-
ization software have been proposed and some have exten-
sively been used both in research and clinical investigations
[13–14].

The most of them share similar principles and can be classified
into two categories: the voxel-based ones (i.e. SPM, NEUROSTAT
and BRASS) and the ones based on neuroanatomy (i.e. CBA).
We will briefly describe the mostly implemented ones.

Statistical parametrical mapping

Statistical parametrical mapping (SPM) [15], is the worldwide
mostly used voxel-based standardization software in brain ima-
ging for between- and within-subject CBF comparisons. Images
are spatially standardized into a common space, and smoothed.
Parametric statistical models are summed, at each voxel, using
the General Linear Model to describe the variability in the data.
Hypotheses expressed in terms of the model parameters are
assessed at each voxel with univariate statistics. This results in an
image whose voxel values are statistics, producing t-statistical
maps of significant changes in distribution and basing the output
on the analyses of clusters of voxels. Such analysis should to take
into account the statistical threshold as well as the size of the
cluster in relationship to the implemented methodology: the higher
the spatial resolution of the camera the smaller the size of cluster
of voxels for statistically significance.

NEUROSTAT

NEUROSTAT [16] is a software library for neurological and
biomedical image analysis including programs for brain activa-
tion studies, group comparison, three-dimensional stereotactic
surface projections and co-registration SPECT-MRI-PET. Anatomic
standardization is performed by an automated algorithm estima-
ting the location of the bicommissural line on the scan mid-sagittal
plane and realigns the image to such orientation between indivi-
duals. Regional differences between individual’s scan and a stan-
dard atlas brain are minimized automatically by linear scaling and
nonlinear warping techniques. Original images are then resam-
pled into a stereotactic image format minimizing anatomic varia-

tions across subjects [17–19]. For image interpretation NEURO-
STAT uses a 3D stereotactic surface projection technique to de-
pict on the brain surface the cortical CBF and metabolic activity.

It also calculates a z-score to identify statistical deviations from
a control subjects’ database. Stereotactic coordinates will also
allow for a precise localisation of signals.

NEUROSTAT output has recently been validated versus the
gold standard of SPM in normal subjects yielding  very small
difference in standardisation when compared to MRI [20–21].

BRASS

BRASS [22–26] is a standardization software that matches,
with automatic masking, patient images to 3D reference templates
of normal patients. Defects are localized and quantified against
a database of normal patients on a voxel-by-voxel basis. The
marked voxels can be assessed statistically, using the standard
deviation criterion or within a 3-dimensional map of regions-of-
-interest. BRASS     analyses many types of images, including
99mTc-HMPAO, 99mTc-ECD, 123I-IBZM dopamine receptor, FDG-PET
and recently FP-CIT (DAT) images.

During the last years several research groups have collected
both patients and controls scans acquired with different modali-
ties. At the moment being BRASS is able to provide 19 FDG tem-
plates from 4 PET scanners from 6 centres, 15 perfusion SPECT
templates acquired with 2 tracers and with 6 different cameras in
8 centres and 18 Dopamine Transporters templates acquired with
4 tracers and 5 different cameras in 5 centres.

In total 52 Databases are available for BRASS users in order
to match their patients data to a larger control group. The data-
-base availability works towards a more widespread collaboration
among centres in order to save money and energies and avoids
to build expensive in-house healthy subjects database. The draw-
back of such strategy are the in-homogeneities of the implement-
ed cameras and of the scanning and radiopharmaceutical proto-
cols in the different centres that should be corrected by careful
phantom studies and by the implementation of a strict and
homogenous patients management [25].

Computerised brain atlas

The computerised brain atlas (CBA) is a software tool origi-
nally developed by Greitz et al. [27], and applicable to any brain
imaging modality. It is based on data from one cryosectioned brain
in combination with information from the literature. It contains 3D
surface descriptions (VOIs) of approximately 400 brain structures
including the brain surface, the ventricular system, the cortical gyri
and sulci, as well as the cortical cytoarchitectonic areas (Brod-
mann areas). The major basal ganglia and the brain stem nuclei
are also included (Figure 2).

All image sets are spatially normalized into the stereotactic
space of the atlas by using the global polynomial transformation
[28]. It consists of translations, rotations and linear scaling along
and around each of the three image axes. It also contains 18 non-
-linear shape-deforming parameters, which makes it possible to
individualize the shape of the brain. The fully automatic method is
generally used, in which all scans are registered to a SPECT tem-
plate [29]. Computerised brain atlas identifies the brain surface,
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the ventricular system and some central nuclei and fits to the afore-
mentioned structures by minimizing the difference in voxel inten-
sity. Subsequently, it deforms and stretches these structures,
maximising a simple similarity measure, to fit them to a previously
defined reference SPECT scan. A major advantage of the tech-
nique is that it creates an almost fully automatic tool able to de-
crease the analysis time and to standardize patients providing
additional anatomic information. The segmentation of the brain in
VOIs reduces the number of variables to an amount that is possi-
ble, in a second step, to submit to multivariate analysis (i.e. PCA).

Single photon emission computed
tomography

Modern gamma camera are operating on-line to a computer
system for additional signal and image processing, image dis-
play and tomographic reconstruction are designed with more than
one camera head, typically three. Tomographic examination is
a pre-requisite for rCBF single photon emission computed tomo-
graphy (SPECT), due to the complex brain anatomy with superim-
posed anatomo–functional structures. The resulting contrast-en-
hancing effect of the tomographic registration technique is of great
importance since the differences between normal and pathologi-
cal uptake in various brain regions may be rather small.

The study of rCBF using SPECT is based on depicting the
distribution of 99mTc-HMPAO, 99mTc-ECD or [123I]-Iodoamphetamine,
which are imaged in the brain after intravenous administration.
Despite that [123I]-Iodoamphetamine may best represent rCBF,
[30], this tracer is rarely used due to a high cost and restricted
availability. In this paper we will briefly review only studies per-
formed with 99mTc-HMPAO.

The intracellular retention of 99mTc-HMPAO in the central ner-
vous system is the effect of a rapid conversion from the lipophilic
into the hydrophilic form at the exposure to endogenous intracel-
lular glutathione, which is a powerful reducing agent. Trapped in
the cell, 99mTc-HMPAO remains practically unchanged being its
detection limited by decay of 99mTc (t½ = 6.02 h). This specific
property allows for scans performed several hours later to still
depict the rCBF at the moment of administration [31] and is of
paramount importance when examining physically and mentally

impaired patients allowing for the administration to be made in
a quite environment and the scan postponed according to pa-
tients physical and psychological status.

Statistical approach

Univariate analysisUnivariate analysisUnivariate analysisUnivariate analysisUnivariate analysis
In univariate analysis there is only one variable under consid-

eration. It can be independent, as in the case of CBF data or de-
pendent as in the case of the same subject measured at two dif-
ferent times. In both cases it is possible describe the data in terms
of mean and variance (the two parameters of the normal distribu-
tion). After testing the two means, possible significant differences
need to be explained. The standard approach is to assume that
the difference is due to an experimental effect and sources of
variance are under control. However, this is not so obvious in neu-
ro-functional studies in which many sources of variance are
present. Hence, if we want to study the relationships among those
sources, multivariate analysis has to be implemented.

The t-test for dependent samples is the most commonly used
method to evaluate the differences in means between two groups
of observation made on the same sample of subjects who were
tested twice. When group of observation  are made on different
subjects a t-test for independent samples is used. One-way ANOVA
is performed when groups are three or more. In such cases noth-
ing can be done about the variation due to individual differences
since it is not possible to identify, or subtract, such differences.
This is why the t-test for independent samples is always less
sensitive.

Multivariate analysisMultivariate analysisMultivariate analysisMultivariate analysisMultivariate analysis
Multivariate statistic provides a simultaneous analysis of mul-

tiple independent (i.e sex, disease) and dependent (i.e. Hemi-
spheres, VOI) variables in order to determine the relationship
among them. Such statistical approach also introduces regional
analyses based on the assumption that correlated patterns exist
among different brain regions and such relationships affect reci-
procally the investigated variable. Variables may be correlated with
each other, and their statistical dependence is often taken into
account when analyzing such data. In fact, the consideration of

Figure 2.Figure 2.Figure 2.Figure 2.Figure 2. Computed brain atlas template fit to an MRI (left) and to a SPECT study before spatial standardization. All cortical brodmann areas and central
structures are defined by the atlas volumes of interest.
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statistical dependence and intercorrelations between variables
make multivariate analysis somewhat different in approach and
considerably more complex than the corresponding univariate
analysis, in which there is only one variable under consideration.
In the multivariate perspective each voxel is considered conjointly
with explicit reference to the interactions among brain regions ren-
dering it particularly appropriate for brain studies and providing
a complementary characterization of CBF patterns.

Multivariate analysis requires the number of observations
(scans) to be greater than the number of components of the mul-
tivariate observation (variables, i.e. voxels). In neuroimaging tech-
niques (in which the raw images contain and extremely high num-
ber of voxels) the number of variables needs therefore to be re-
duced, by using ROIs, VOIs or factorial groupings.

It takes into account the statistical inference about the response
of the entire brain, without regional specificity. If interactions are
present one can move from an “omnibus” effect to regional chan-
ges with the limitation of the sample size (ROI/VOI/factor).

Multivariate analysis of variance (MANOVA)Multivariate analysis of variance (MANOVA)Multivariate analysis of variance (MANOVA)Multivariate analysis of variance (MANOVA)Multivariate analysis of variance (MANOVA)
It is an extension of ANOVA methods and it is used when one’s

design involves one or more categorical independent variables (i.e.
groups) and two or more continuous dependent variables (i.e. CBF).
As well as identifying whether changes in the independent varia-
bles have a significant effect on the dependent variables, the tech-
nique also seeks to identify the interactions among the indepen-
dent variables and the association between dependent variables.

ANOVA and MANOVA could be used with a control variable,
called covariate. The control variable is used to test the main and
interaction effects of categorical variables (i.e. disease and sex)
on one or more continuous dependent variable. For instance, the
age of subjects can be used as a covariate to control for initial
group differences on blood flow. ANCOVA and MANCOVA are
used to control for factors which cannot be randomized but which
can be measured on an interval scale.

Controlling for one or more covariate  reduces errors and in-
creases the statistical power (sensitivity) of the experimental design.

Discriminant function analysisDiscriminant function analysisDiscriminant function analysisDiscriminant function analysisDiscriminant function analysis
Discriminant analysis (DA) is performed at group level to esti-

mate the relationship between groupings performed according to
the tested methodology and a gold standard (i.e. SPECT/PET di-
agnosis vs. previous clinical diagnosis). The main objective is to
construct rules for assigning future observations to one of the
groups in order to minimize the probability of misclassification.

Discriminant analysis individuates which variables are ”best”
to separate cases into two or more predefined groups. If varia-
bles are effective for a set of data, the classification table of cor-
rect and incorrect estimates will yield a high percentage correct.

The purposes of DA are: to investigate differences between
groups; to determine the most parsimonious way to distinguish
between groups; to discard variables which are little related to
group distinctions; to classify cases into groups and to test theory
by observing whether cases are classified as predicted.

Stepwise DA is the most common application of discrimi-
nant function analysis and includes many variables in the study,
in order to determine the ones that best discriminate between
groups.

Receiver operating characteristicReceiver operating characteristicReceiver operating characteristicReceiver operating characteristicReceiver operating characteristic
The ability of a test to discriminate diseased cases from nor-

mal cases could also be visually evaluated using receiver opera-
ting characteristic (ROC) curve analysis [32–33].

A ROC curve is simply a plot of the true positive (sensitivity)
rate against the false positive   rate for the different possible cut-
off points of a diagnostic test. As would be expected, achieving
higher detection performance generally results in an increase in
incidents of false alarms: any increase in sensitivity will be
accompanied by a decrease in specificity.

This happen because disease and not-disease distribution
curves almost always overlap: moving up and down the cut-off
points change hits and false positive rates.

In terms of graphical representation, the closer the curve fo-
llows the left-hand border and then the top border of the ROC
space, the more accurate the test. On the other hand, the closer
the curve comes to the 45-degree diagonal of the ROC space,
the less accurate the test. The area under the curve is a measure
of test accuracy (Figure 3).

K-means clusteringK-means clusteringK-means clusteringK-means clusteringK-means clustering
K-means clustering is implemented to create k groups of indi-

viduals based on raw data. It splits a set of objects into a selected
number of groups by maximizing between variation relative to within
variation. K-means is an iterative procedure that assigns cases to
a specified number of non-overlapping clusters. The procedure
iterates through the data until it successfully clusters your cases.
Chi-square is used to test the distribution differences between the
obtained clusters and the clinical diagnosis and type.

Figure 3.Figure 3.Figure 3.Figure 3.Figure 3. A ROC curve created plotting the true positive rate (Sensitivity)
in function of the false positive rate (100-Specificity) for different cut-off
points. Each point on the ROC plot represents a sensitivity/specificity pair
corresponding to a particular decision threshold. A test with perfect dis-
crimination (no overlap in the two distributions) has a ROC plot that pass-
es through the upper left corner (100% sensitivity, 100% specificity).
Therefore the closer the ROC plot is to the upper left corner, the higher
the overall accuracy of the test.
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K-means clustering searches for the best way to separate
subjects into different groups. Because it focuses on reducing
within-groups sums of squares, k-means clustering is like a multi-
variate analysis of variance in which the groups are not known in
advance.

Principal component analysisPrincipal component analysisPrincipal component analysisPrincipal component analysisPrincipal component analysis
Principal component analisys (PCA) is a data driven technique

(i.e., there is no a-priori model or hypothesis) that transforms
a number of (possibly) correlated variables into a (smaller) number
of not-correlated factors, called principal components. Principal
component analysis is totally data-led and is independent by any
model or a-priori hypothesis.

It does not create effects that are not present in the data, nor
does lose information. The first principal component accounts for
the highest percentage of the variability in the data and each of
the following component accounts for a portion of the remaining
variability in a descending scale. The number of factors to be ex-
tracted is determined after examining the eigenvalue [34]. This
statistical approach introduces regional analyses based on the
assumption that correlated patterns exist among different brain
regions and such relationships affect reciprocally the rCBF or the
metabolism. In PCA each component is orthogonal and functio-
nally not correlated to the remaining ones. It sorts subject-region
interaction and it guarantees that regional coupling has been
accounted for.

An advantage with a CBA-VOI based approach is that it
allows for the investigation of the rCBF relationships between ana-
tomically distributed but physiologically correlated brain regions
using PCA. Applying PCA to the VOIs allows for a reduction of the
number of variables through the grouping of VOIs into factors.
This latter characteristic of PCA might be of utmost importance in
analysing pathological conditions in which functionally integrated
pathways are involved in the disease process.

Functional connectivity

Functional connectivity implies that pool activities of brain ar-
eas “go up and down” together and regions share a significant
number of neurons whose dynamic interactions occur at the same
time. Correlated areas will have correlated perfusion and neuronal
activity. Functional connectivity is simply a statement about the
observed correlations and characterizes distributed brain systems.

The functional role played by any component (neuron) of a con-
nected system (brain) is largely defined by its connections. Extrinsic
connections between cortical areas are not continuous but occur in
patches or clusters (functional segregation, in which cells with com-
mon functional properties are thought to be grouped together).

On the other hand functional integration is mediated by the
interactions between functionally segregated areas resulting in
a general functional connectivity effect on the brain. Functional
connectivity characterizes distributed brain systems and implies
“model-free” temporal correlations between neurophysiological
events: correlated areas will have correlated perfusion and neu-
ronal activity.

The issues related to functional segregation are generally in-
vestigated by means of univariate analysis while functional inte-
gration is better analyzed by multivariate analysis.

Statistical parametric mapping is typically predicated by func-
tional segregation and analyses regionally specific aspects of func-
tional organization. Principal component analysis and multivari-
ate analysis are inspired by functional integration mediated by
anatomical, functional and effective connections that form the basis
for characterizing patterns of correlations and describe distribu-
ted changes in terms of systems.

Implementation in research

In the recent past standardization software and novel statisti-
cal methodologies have been implemented by several groups in
both neurodegenerative and psychiatric research in order, by
means of the new methodologies, to improve the diagnostic
accuracy of functional neuroimaging.

In neurodegenerative research AD has been the most investi-
gated pathology and rCBF distribution pattern has reached a wide
consensus among researcher and clinical investigators. In typical
cases, it shows reduction of rCBF and metabolism as depicted
by SPECT and PET respectively.

The characteristic finding in AD is a bilateral flow reduction in
the temporo-parietal cortex [3, 5–7, 9–10, 35–42] and reduced
frontal lobe perfusion in the late phase of the disease [43–48].
Such deficits may vary across studies and the reported incidence
of the typical rCBF pattern ranges between 30 to 100%, for more
advanced stages [3, 49]. In general, such studies have preferably
been focused on the tracer distribution in cortical brain tissues.
The changes caused by AD on anterior [50–51] and posterior [52]
cingulate cortex and on central structures [37, 52–54] have sel-
dom been studied. This latter regions have recently been high-
lighted by a study in which 3D standardization software and mul-
tivariate statistic have been implemented [55] (Figure 4).

Principal component analysis when applied by means of CBA
to 54 VOIs covering the most of the cortex and deep grey struc-
tures resulted in a larger significance map as compared to SPM in
discriminating early AD from normal controls [56] (Figure 5).

In a recent paper, Mosconi [57] reviewed the hypothesis that
cortical hypometabolism in AD may be the consequence of reduced
projections from dysfunctional neurons in distant brain regions su-
ggesting that the hypometabolism found in AD may partly result from
neuroanatomical disconnection with the rhinal cortex.

These findings are of utmost importance since they under-
score the functional connections between different brain areas in
AD and demonstrate that multivariate statistics (i.e. PCA) might
increase the depth and the physiological significance of the anal-
ysis as compared to univariate analysis (i.e. SPM).

The recent literature about probable AD [5, 58–64] reported
an accuracy for SPECT scans performed with 99mTc-HMPAO be-
tween 64% and 95%. Sensitivity varied between 46% and 100%
and specificity ranged between 52% and 85%. As for possible
AD, sensitivity and specificity decreased to about 84% and 52%
respectively [6]. All such studies based on ROI/VOI analysis were
designed on the use of the mean count-density/voxel data.

In a systematic review of the diagnostic accuracy of 48 99mTc-
-HMPAO SPECT studies, Dougall et al [65] concluded that clinical
criteria may be more sensitive in detecting AD than brain SPECT
(81% vs. 74%) but this latter is superior in differentiating AD from
other types of dementia (91% vs. 70%). On the other hand, a re-
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Figure 4.Figure 4.Figure 4.Figure 4.Figure 4. Images obtained subtracting the average data pool of Alzheimer’s Disease patients from a group of 19 normal controls. The images highlight
decreased CBF in tempo-parietal cortex and in the nuclei caudati, bilaterally. The colour scale is in arbitrary units.

Figure 5.Figure 5.Figure 5.Figure 5.Figure 5. Images showing significant rCBF differences between a control group of 30 individuals and an early Alzheimer’s disease group of 27 patients.
On the left univariate t-statistic maps as depicted by SPM. On the right left (upper) and right (lower) representations of principal components as identified
by PCA from a pool of 54 VOIs.

cent FDG-PET study showed provided a sensitivity for distinction
between mild to moderate AD and normal controls of 93% [66].

However, applying in mild to moderate AD novel methodolo-
gical approaches analysing raw data either by k-means clustering
and five different intrinsic properties of the image [67] or by means
of PCA [56] even with 99mTc-HMPAO SPECT accuracies of  98%
and 90%, respectively were reached.

Functional connectivity has also been recently explored by PCA
in Parkinson’s disease [68], leading to very promising results.

A relatively new field of application in which functional neuroim-
aging is gaining more and more consensus is psychiatry. Even if
rCBF distribution pattern in the most of psychiatric disorders has not
been defined yet, many researches are involved in functional studies
on depression, schizophrenia and other psychiatric diseases.

Major depressive disorder (MDD), a primary idiopathic di-
sease characterised by the occurrence of depressive episodes
(unipolar depression), is a prevalent clinical condition affecting
26% of the population on a life-time basis [69] and in the next
years, also due to the western world life-style, will become one of
the dominant neuro-psychiatric and social issues.

A recent paper reviewing 11 studies with 218 unmedicated
patients with depression found that the decreased 99mTc-HMPAO
distribution in frontal regions compared to control subjects was
the most common finding [70]. Increased 99mTc-HMPAO distribu-
tion in various regions, including frontal regions, was also repor-
ted in a few studies [71–79]. It is yet not clear if alterations of
tracer distribution reflect ’trait’ phenomena that are present prior
to onset of overt depression, or ’state’ phenomena. It is also un-
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Figure 6.Figure 6.Figure 6.Figure 6.Figure 6. Graphical representation of lateral and medial views of hemispheres depicting four functional regions in which there is a significant rCBF
difference between 66 normal controls and 70 MDD patients.

Figure 7.Figure 7.Figure 7.Figure 7.Figure 7. Subtraction image depicting the brain regions in which symptomatic PTSD patients showed higher rCBF response to a script-driven stimulus
as compared to non-symptomatic subjects.

known if abnormalities of tracer distribution are pathophysiologi-
cally involved in the evolution of depression, or are an additional
expression of an as yet unknown etiological factor of the disease.
For all these above mentioned reasons the deeper investigation
level allowed by multivariate analysis might help in clarifying in
MDD the fine and hidden relationships between regions not de-
tectable with conventional statistical analysis.

Applying PCA to patients with major depressive disorder, in-
creased rCBF  was found in 4 principal components including
regions sharing close anatomical and functional relationships [80–
–81 (Figure 6) confirming  the importance of multivariate analysis
in detecting functional changes in pathological conditions.

Multivariate statistics was also recently implemented in a study
including, so far, the largest series of subjects investigated in post
traumatic stress disorder (PTSD) [82]. In this case ANCOVA, allowed
to highlight the entire right hemisphere as the region mostly involved
in the emotional response to a script-driven stimulus (Figure 7).

Conclusions

Standardisation software and the creation of control groups
add diagnostic value to functional neuroimages. The use of mul-
tivariate statistics renders the analysis more complete and able to
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properly assess all variables. The application of the proposed
methods could give an additional value to functional studies in
which visual and semi-quantitative evaluations have not, at the
time being, achieved a fair accuracy.

In the field of brain imaging, this the case of psychiatric disor-
ders or mild cognitive impairment in which clear anatomo-patho-
logical findings have not been demonstrate to parallel the clinical
status in all circumstances yet.
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